
TRANSFORMER:
Il meccanismo di
attenzione

Marco Ligabue marco.ligabue1@studenti.unimi.it

Introduzione

I modelli sequenziali, come le reti neurali ricorrenti (RNN) e convolutive (CNN), dominavano
la traduzione automatica e il modeling di sequenze.

I transformer vogliono risolvere i maggiori problemi delle RNN:
1. Le RNN processano le serie in modo sequenziale, il che limita la parallelizzazione.
2. Aumentare la lunghezza della sequenza causa difficoltà a modellare le dipendenze a

lungo raggio (problema della scomparsa del gradiente)

Introduzione

Un Transformer è un tipo di modello di deep learning introdotto nel paper «Attention Is All
You Need» (2017, Google Brain). Questi modelli sono diventati rapidamente fondamentali
nell'elaborazione del linguaggio naturale (NLP) e sono stati applicati a una vasta gamma di
compiti nell'apprendimento automatico e nell'intelligenza artificiale

Innovazioni

1. Positional Encoding: Fornisce informazioni sulla posizione di ciascun token (parti
dell'input, come parole o sottoparole in NLP) nella sequenza, consentendo al modello di
considerare le informazioni sequenziali della sequenza.

2. Self-Attention: L'attenzione è un meccanismo che calcola i pesi per ogni token nella
sequenza in relazione a ogni altro token, in modo che il modello possa prevedere i token
che probabilmente compariranno nella sequenza.

Esempio di funzionamento

Immaginiamo di dover convertire una frase inglese in italiano. Questi sono i passaggi

necessari per svolgere questo compito con un modello transformer:

1. Input embeddings: La frase di input viene prima trasformata in rappresentazioni

numeriche chiamate embeddings.

2. Positional encoding: insieme di valori o vettori aggiuntivi che vengono sommati agli

embeddings dei token.

3. Multi-head attention: L'attention è eseguita in molteplici "test di attenzione" per

catturare diversi tipi di relazioni tra i token.

4. Layer normalization e residual connections: Il modello utilizza la layer normalization e

le residual connections per stabilizzare e velocizzare l'addestramento.

Esempio di funzionamento

5. Feedforward neural networks: L'output del livello di self-attention viene passato

attraverso strati feed-forward.

6. Stacked layers: Tipicamente vi sono più livelli impilati uno sopra l'altro. Ogni livello

elabora l'output del livello precedente.

7. Output layer: Può essere aggiunto un modulo decoder separato sopra l'encoder per

generare la sequenza di output.

8. Training: I modelli vengono generalmente addestrati utilizzando l'apprendimento

supervisionato, dove imparano a minimizzare una funzione di perdita che quantifica la

differenza tra le previsioni del modello e la ground-truth.

9. Inference: Dopo l'addestramento, il modello può essere utilizzato per l'inference su

nuovi dati

Architettura

L'architettura segue uno schema

ENCODER-DECODER:

•L'encoder trasforma l'input in una

rappresentazione continua.

•Il decoder genera una sequenza output

utilizzando le informazioni dall'encoder.

Encoder
L'encoder è composto da una pila di layer identici.

Ogni layer ha due sublayer:

1. Meccanismo di self-attention multi-head

2. Rete feed-forward completamente connessa, applicata per
posizione.

Si utilizza una Residual Connection attorno a ciascuno dei due
sublayer, seguita da una normalizzazione del layer .

L'output di ciascun sublayer è 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)), dove
𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥) è la funzione implementata dal sublayer stesso.

Per facilitare queste connessioni residue, tutti i sublayer nel
modello, così come i layer di embedding, producono output con la
medesima dimensione 𝑑𝑚𝑜𝑑𝑒𝑙.

Decoder

Anche il decoder è composto da una pila di layer identici.

Ha un sublayer in più, che esegue una multi-head attention
sull'output della pila di encoder.

Come nell'encoder, vengono utilizzate residual connections
attorno a ciascuno dei sublayer, seguite dalla normalizzazione del
layer.

Il sublayer di self-attention nella pila del decoder viene modificato
per impedire che le posizioni possano fare attenzione alle posizioni
successive.

Attention Mechanism

Una funzione di Attention può essere descritta come una mappatura di una query e di

un insieme di coppie key-value su un output, in cui query, keys, values e output sono

tutti vettori.

L'output viene calcolato come una somma ponderata dei valori, dove il peso assegnato

a ciascun valore è determinato da una funzione di compatibilità tra la query e la chiave

corrispondente.

Due tipi comuni di attention:

• Dot-product

• Additive (usa una rete feed-forward)

Scaled Dot-Product
Attention
Utilizza query e chiavi di dimensione 𝑑𝑘 e valori di dimensione 𝑑𝑣.

L'attenzione su un set di query viene calcolata simultaneamente,
raggruppando query, chiavi e valori nelle matrici 𝑄, 𝐾 𝑒 𝑉.

L'output è dato da:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉

Per grandi 𝑑𝑘, il prodotto scalare aumenta, portando softmax in
regioni con gradienti molto piccoli; lo scaling aiuta a gestire
questo effetto.

Multi-Head Attention

La multi-head attention consente al modello di prestare
attenzione congiuntamente a informazioni provenienti da
diversi sottospazi di rappresentazione in posizioni differenti.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ 𝑊𝑂

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉)

Dove le proiezioni sono matrici dei parametri

𝑊𝑖
𝑄

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙𝑥𝑑𝑘, 𝑊𝑖
𝐾 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙𝑥𝑑𝑘, 𝑊𝑖

𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙𝑥𝑑𝑣, 𝑊𝑂 ∈

ℝℎ𝑑𝑣𝑥𝑑𝑚𝑜𝑑𝑒𝑙

Con una singola attention head, la media ostacola questo
processo. Le queries, keys e values vengono poi usate per
eseguire la funzione di attention in parallelo, producendo
output di dimensione 𝑑𝑣.

Encoding posizionale

Per consentire al modello di sfruttare l'ordine della sequenza (dato che non contiene ricorrenza o
convoluzione), vengono aggiunti i positional encodings agli embeddings in input, alla base delle stack
di encoder e decoder.

I positional encodings hanno la stessa dimensione 𝑑𝑚𝑜𝑑𝑒𝑙 degli embeddings, così da poter essere
sommati. Sono disponibili diverse opzioni per i positional encodings, sia apprese che fisse.

ESEMPIO: si utilizzano funzioni seno e coseno a diverse frequenze:

Per le dimensioni pari: 𝑃𝐸 𝑝𝑜𝑠,2𝑖 = sin
𝑝𝑜𝑠

10000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

Per le dimensioni dispari: 𝑃𝐸 𝑝𝑜𝑠,2𝑖+1 = cos
𝑝𝑜𝑠

10000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

Dove pos è la posizione e i è la dimensione. Ogni dimensione dell'encoding posizionale corrisponde a
una sinusoide con lunghezze d'onda che formano una progressione geometrica da 2π a 10000⋅2π.

Confronto tra self-attention,
layer ricorrenti e convoluzionali

Complessità computazionale per layer:

Self-attention ha una complessità più bassa rispetto ai layer ricorrenti quando la lunghezza
della sequenza n è minore della dimensionalità d della rappresentazione.

Parallelizzazione:

Self-attention connette tutte le posizioni con un numero costante di operazioni sequenziali,
mentre i layer ricorrenti richiedono O(n) operazioni sequenziali.

Dipendenze a lungo raggio:

Self-attention consente percorsi più brevi tra posizioni di input e output rispetto ai layer
ricorrenti e convoluzionali, facilitando l'apprendimento delle dipendenze a lungo raggio.

Layer convoluzionali:

Richiedono più layer O(n/k) o O(logk(n)) per collegare tutte le posizioni, aumentando la
lunghezza dei percorsi.

Confronto tra self-attention, RNN e CNN

n: sequence length
d: representation dimension
k: kernel size of convolutions
r: size of the neighborhood in restricted self-attention.

Grazie per l’attenzione!

	Diapositiva 1: TRANSFORMER: Il meccanismo di attenzione
	Diapositiva 2: Introduzione
	Diapositiva 3: Introduzione
	Diapositiva 4: Innovazioni
	Diapositiva 5: Esempio di funzionamento
	Diapositiva 6: Esempio di funzionamento
	Diapositiva 7: Architettura
	Diapositiva 8: Encoder
	Diapositiva 9: Decoder
	Diapositiva 10: Attention Mechanism
	Diapositiva 11: Scaled Dot-Product Attention
	Diapositiva 12: Multi-Head Attention
	Diapositiva 13: Encoding posizionale
	Diapositiva 14: Confronto tra self-attention, layer ricorrenti e convoluzionali
	Diapositiva 15: Confronto tra self-attention, RNN e CNN
	Diapositiva 16: Grazie per l’attenzione!

